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Combinations of pharmaceuticals have significant potential
benefits over single agents as therapeutics.1,2 Two areas

where combinations are used routinely are antiinfectives3,4 and
cancer chemotherapeutics.5 In these areas, high mutation rates
and selection pressure favor emergence of resistant variants, and
combinations are used to reduce the probability of resistance. In
other therapeutic areas, combination treatments are used to enhance
the effectiveness (e.g., in COPD6) or reduce toxicities of (often
chronic) treatments (e.g., in burns7 and immunosuppression8,9).

Synergistic combinations are of particular interest as they
show enhanced activity of the mixture relative to that expected
from additivity of the components’ effects. Synergistic combina-
tions that show increased potency (equivalent therapeutic effects
are seen at lower doses) are of practical interest because they
offer the highest dose reduction10 and thus minimize toxicities.
Another potentially beneficial mode of synergy is enhanced
efficacy (whereby the combination has more therapeutic benefit
than is attained by the single agents at any dose).

Traditionally, combination treatments are created by combin-
ing standard of care compounds in a hypothesis-driven manner.
For example, two or more antibiotics targeting the same class of
bacteria may be mixed,11 or an antibiotic may be combined with a
resistance inhibitor.12 This method will not uncover unanticipated
interactions between targets not thought to be mechanistically

linked, and sometimes such rational designs may fail to be empi-
rically confirmed.13 An alternative approach to the problem of
finding efficacious combinations is an unbiased combinatorial
screen.14 The problem with such approaches is their geometric
scaling. Thus, testing all pairwise combinations of only 1000
compounds leads to ∼5 � 105 assays (combinations of 1000
items taken 2 at a time, 1000C2 = 1000!/(998!*2!) = 495,000).
Looked at another way, whereas a typical pharmaceutical screen-
ing library is on the order of 106 compounds, and screening
capacity is scaled accordingly, 106 data points represents all pairs
of only ∼1400 compounds. Thus, an attempt to systematically
test for combination effects rapidly exhausts screening capacity.
Herein, we present amore efficient strategy to identify efficacious
molecular partners.

’RESULTS AND DISCUSSION

It has been observed that pooling of chemical libraries to
reduce screen size can lead to undesirable false negative and false
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ABSTRACT: Combination therapies that enhance efficacy or
permit reduced dosages to be administered have seen great
success in a variety of therapeutic applications. More fundamen-
tally, the discovery of epistatic pathway interactions not only
informs pharmacologic intervention but can be used to better
understand the underlying biological system. There is, however,
no systematic and efficient method to identify interacting activ-
ities as candidates for combination therapy and, in particular, to
identify those with synergistic activities. We devised a pooled, self-
deconvoluting screening paradigm for the efficient comprehen-
sive interrogation of all pairs of compounds in 1000-compound
libraries. We demonstrate the power of the method to recover
established synergistic interactions between compounds. We then
applied this approach to a cell-based screen for anti-inflammatory activities using an assay for lipopolysaccharide/interferon-induced
acute phase response of a monocytic cell line. The described method, which is >20 times as efficient as a naïve approach, was used to
test all pairs of 1027 bioactive compounds for interleukin-6 suppression, yielding 11 pairs of compounds that show synergy. These
11 pairs all represent the same two activities: β-adrenergic receptor agonists and phosphodiesterase-4 inhibitors. These activities
both act through cyclic AMP elevation and are known to be anti-inflammatory alone and to synergize in combination. Thus we show
proof of concept for a robust, efficient technique for the identification of synergistic combinations. Such a tool can enable
qualitatively new scales of pharmacological research and chemical genetics.
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positive effects relative to unpooled screens.15 We hypothesized
that at least some of these artifactual findings are due to epistasis
among compounds: sets of molecules whose activities on the cell
either enhance or suppress each other. It was of interest to deter-
mine if we could take advantage of pooling to seek, rather
than overcome, epistatic interactions. A pool of 10 compounds
contains 45 pairs (10C2, Figure 1a), implying that a screen using
pools of 10 compounds would be reduced in size by a factor of
45 relative to testing all pairwise interactions individually. In prac-
tice, it has been seen that traditional pooled screening followed
by retesting of components of the active pools is an inefficient
process since the second step is often larger in scale than the first.
To surmount this obstacle, traditional pooled screening has used
self-deconvoluting designs.16 Such designs test each compound
in at least two pools with otherwise different partners, then if two
pools containing a compound show activity, it can be surmised
that the one common component is active. Therefore, we applied
a self-deconvoluting design to our combination screen by devel-
oping a library in which each pair of compounds is represented in
multiple pools with otherwise distinct compounds (Figure 1b).
Finally, to facilitate analysis, each compound is tested alone as
well as in pools.

There are several assumptions that must be met for this ap-
proach to be effective: first, synergy must be rare (otherwise too
many pools would be active and deconvolution would be im-
possible). Next, the dose used must be amenable (if a potentia-
tion exists between two compounds, the doses of both must elicit
a submaximal response). Third, the screening assaymust be robust,
as a high false negative rate will interfere with deconvolution. We
have seen that even in compound libraries that are enriched for
bioactives, synergistic interactions are rare (<2% of pairs, see
below). Whereas the described method uses constant compound
concentrations (1 μM in primary screen), an obvious extension is
to first establish single-compound dose responses and then use
active singles at an EC10 (a concentration eliciting 10% of maxi-
mal response). We find that a 1536-well platform is ideally suited
for this scale of experiment, and many relevant assays have been
miniaturized to perform robustly in this format.17,18

In order to assess the ability of our pooled synergy screening
approach to recover known synergistic interactions, we first
empirically identified synergistic interactions using the tradi-
tional approach of matrixed dose�response analysis. We per-
formed a viability assay in a commonly used colorectal cancer
cell line, HCT116, using 11 oncological chemotherapeutics with
diverse targets (Supplementary Table 1, items 1�11). The com-
pounds were tested in eight-point dose�response assays in all
pairwise combinations (55 pairs), and synergy was assessed by
various metrics.

There exist several methods for characterizing interactions
between compounds,19 and we briefly describe three approaches
we have found useful. Traditional isobologram methods are
based on Loewe additivity,20 which assumes the two compounds
have the same target and is quantified by theCombination Index.10

Synergy ismodeled on the basis of the ability of the combination to
achieve activity at lower concentrations of the constituents than
would be expected from their additive effects. Bliss indepen-
dence21 can be used to model activities with different targets.
This models a noninteraction as multiplicative of its constituent
fractional activities.22 Finally, the highest single activity (“highest
single agent”14) approach looks for activity beyond that of the
most active component. This is not a synergy model as such,
capturing additivity as well as synergy, but is a useful heuristic that
is less conservative than the alternatives. For pooled screens, all of
these metrics were adapted to multicompound combinations
rather than the traditional pairwise calculations.

We analyzed the matrixed dose responses of HCT116 cell
viability with all three of the above methods and settled on the
Bliss independence criterion as a means of selecting actives. This
decision was made in part because the targets of the compounds
in question are known to be different (i.e., the compounds are
mutually nonexclusive inhibitors) and in part because the Bliss
model is more stringent than the HSA criterion in discounting
additive interactions. Figure 2a presents the results of the synergy
analysis using the Bliss model for compound independence. We
set a conservative threshold to define strongly synergistic com-
pound pairs (>20% excess activity over the Bliss model at more
than one dose of each compound, seen reproducibly with repli-
cate Z scores >4). Amore inclusive threshold was used to identify
moderate evidence for synergy (>20% excess activity over Bliss
model for at least one dose combination). Significantly, synergies
between several of these pairs of activities have been previously
reported, including interactions between MEK and PI3K inhi-
bitors,23,24 MEK and EGFR inhibitors,25 MEK inhibitors and the
multikinase inhibitor sorafenib,26 and the multikinase inhibitor
dasatinib with HSP90 inhibitors.27

We next used the 11 compounds (“query compounds”) in the
background of 89 other compounds selected for diversity from a
commercial compound collection. The 100 compounds (Supple-
mentary Table 1) were tested in the pooled synergy screening
paradigm to assess empirical operating characteristics for the
approach. The 4950 pairs of 100 compounds were screened in
136 pools of 10 compounds each, at a final compound concen-
tration of 1 μM. To permit unique deconvolution of the pairs in
positive pools, the 136-pool design was repeated four times with
different compound permutations. Finally, the individual com-
pounds were tested alone in duplicate as well. The full experi-
ment consisted of one-half of a 1536-well plate (768 wells,
including controls) and was performed in duplicate.

The viability readings of the duplicate experiments were highly
reproducible (R2 ∼0.98). We calculated synergy metrics based

Figure 1. Design and execution of screen. (a) Illustration of the 45 pairs
encompassed by a pool of 10 compounds, depicted as colored blocks.
(b) Illustration of self-deconvoluting design whereby each pair is con-
tained in two different pools of 10 compounds with otherwise distinct
members. For a pair to be considered active, both pools must score in the
phenotypic assay. In that case, the responsible pair can be identified as
the only common one, thus obviating the need for retesting all 45 pairs in
follow-up.
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on Bliss,21 HSA,14 and Loewe10 models and selected hits based
on departure from the noninteraction expectations of the various
models. On the basis of exploratory analysis of the data, we
settled on a synergism threshold of >10% excess activity over that
expected by both Bliss and HSA models, yielding 53 hit pools
(Supplementary Figure 1).

To deconvolute the active pairs of compounds in the 10-
compound pools, the hit wells were analyzed for common pairs
of compounds. We found 81 pairs that could be unambiguously
identified as active because they appeared at least three times in
the 53 hit pools. These 81 pairs are designated synergistic
interactants based on the pooled screen, and this list can be
compared to our previously established classification of strongly,
moderately, and nonsynergistic pairs (Figure 2a). Of 81 pairs,
15 were synergies between two query compounds, and we used
these to assess false positive and negative rates of the methodology
(Figure 2b). The pooled synergy screening approach recovered
6/7 of our previously defined strongly synergistic compound pairs
(false negative rate of 14%) and 4/10 of moderately synergistic
combinations (false negative rate 60%). Additionally, the pooled
screen identified as synergistic 5 of the 38 pairs that did not show
significant synergism in the matrixed dose�response analysis,
implying a false positive rate of 13% (Supplementary Figure 1).
The false positive rate is of less concern because, as demonstrated
below, false positives can be triaged in follow-up experiments.
However, false negatives represent lost opportunities and are

therefore important to minimize. Our pooled synergy screening
approach demonstrates a relatively high sensitivity to uncover
synergistic interactions.

In order to test a larger compound set using more specific
biology, we next implemented a screen for anti-inflammatory
combinations. The THP-1 monocytic cell line was stimulated
with a pro-inflammatory cocktail (lipopolysaccharide plus
interferon γ), and compounds that synergistically inhibit the
acute phase response, as read out by IL6 secretion, were
identified; 1027 compounds were tested for their ability to
interfere with the IL6 response, both alone and in pooled
combinations. Using this pooled, self-deconvoluting design, we
reduced the size of the screen from ∼106 wells (for duplicated
all-pairs assay), to 31,236 wells, a scale that can be easily
screened without the need for robotics (22 � 1536-well plates
including controls). No absolute hit threshold was established
on the raw signal or percent inhibition, but rather hits were
chosen on the basis of the departure of the individual well’s
signal from that expected under independence or additivity of
the compounds (Figure 3a). Potential actives were identified
on the basis of the union of the three described synergy metrics
(i.e., pairs were followed up if they passed a threshold on any of
the tests for synergy).

From the primary screen, 350 hit pools were identified, and
in deconvolution these pools yielded 228 pairs that replicated
(assuming independent distribution of pairs among 350 pools,

Figure 2. (a) HCT116 viability screen results.ΔBliss values (difference between observed and expected results under Bliss independence) are depicted
in a heat map with subplots for individual pairs of compounds. Positive values (blue) indicate inhibition of cell growth higher than expected on the basis
of the single compound effects at the given dose. Pairs showing strong synergism are boxed in green, and moderate synergism is boxed in brown. False
negatives in the pooled screen are indicated as dashed boxes, and false positives in the pooled screen are indicated with asterisks. (b) Pairs of query
compounds that were positive in the pooled screen. Green-shaded pairs were previously established (panel a) to be strongly synergistic, brown-shaded
pairs were moderately synergistic, while white pairs were not considered synergistic in the pairwise matrixed dose�response analysis.
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115 would be expected by chance, p ∼10�10, Fisher exact test).
This hit rate represents 1.4% of the pools but only 0.04% of the
pairs screened (Figure3 b).

We took these 228 pairs forward into confirmation. The
confirmation phase tested the pairs individually in triplicate at
two concentrations (1 and 3 μM), using the original IL6 inhi-
bition assay and a viability control assay. Thirty (13%) of the
pairs confirmed in the IL6 assay (Figure 3 b), and none of the
pairs had significant reductions in viability at the time point
tested (not shown). Interestingly, 21 of the 30 confirmed pairs
consisted of the same two activities in combination: phospho-
diesterase 4 (PDE4) inhibitors and β-adrenergic receptor (βAR)
agonists. Given the prevalence of these two target classes in the
starting library (10 compounds each), this represents a signifi-
cant enrichment of the pair (p < 10�15, Fisher exact test).

We can use the confirmation results to estimate the false
negative rate of the screen based on the coverage of βAR and
PDE4 compounds in the initial collection. Five out of 10 βAR
and eight out of 10 PDE4 compounds weremembers of pairs that
showed activity in the IL6 assay. One would expect all pairs of
these to be active, yielding 40 pairs. Since 21 were recovered, this
suggests a false negative rate of∼48%, in line with the measured
false negative rate of 14�60% in the HCT116 viability assay. If
screening collections are designed with at least two representa-
tive compounds for each target class, and given this false negative
rate, there is a ∼95% chance of identifying at least one of the
pairs as active at this stage (1�0.484), suggesting that the pooled
synergy screening approach can have high power to identify
active combinations.

To validate the results, we then tested the confirmed 30 pairs
in a dose�response assay. A 6 � 6 matrix dose response was
constructed for each pair, and IL6 inhibition and viability were
assayed. Figure 4 shows one example pair in this assay. It can
be seen that the activity reached at the highest dose (14.3 μM) of
each compound alone (lowest blue curves in Figure 4a,b, left
column and bottom row of Figure 4c), is exceeded in all cases
when the second compound is present at any dose. This is an
efficacy boost in addition to a potentiation (leftward shift of
dose curve; decreased EC50), which is seen only for the second
compound (Figure 4b). It can be seen that this efficacy boost is
well captured as synergistic by two standard models of synergy:
highest single activity (HSA) and the Bliss model (Figure 4d,e).
In contrast, the combination index, which models only potency
shifts, does not capture the synergy (Figure 4f). Also notable is
the ability of the approach to robustly recover synergistic inter-
action in the presence of experimental noise (assay Z0 factor
∼0.3;28 see for example variability in Cpd02-only dose curve,
lowest blue curve and circle markers, Figure 4a).

We conservatively considered pairs to be validated as syner-
gistic combinations only if they showed synergism at more than
one dose. Eleven out of the 30 pairs were validated; all of them
were composed of one βAR agonist and one PDE4 inhibitor
(Figure 3b, Table 1). Because 10 of the pairs targeting βAR and
PDE4 did not validate, new analyses may need to be applied to
decrease false negatives at the validation stage. Structures of the
validated compounds are presented in Supplementary Table 2.

The combination of βAR agonists and PDE inhibitors elevates
cAMP to levels unobtainable either in the absence of cAMP
production (i.e., without adrenergic activation) or in the presence
of its hydrolysis (i.e., without PDE inhibition). Both βAR ago-
nism29�31 and PDE4 antagonism32,33 are independently known
to be anti-inflammatory. Additionally, it has been reported that
the combination of these two activities can act synergistically.34�36

Thus, our findings are consistent with established biology and
provide a proof-of-concept for the synergy screening platform.

The mode of synergy that we observe is an efficacy boost,
whereby the maximal attenuation of IL6 activity was increased
approximately 2-fold (Figure 4). In this case, one can hypothesize
that this synergy is due to the fact that each activity indepen-
dently leads to increased cAMP, with further increased levels
resulting from the combination. This is distinct from potency
shifts often seen with compounds affecting the same target or
pathway and modeled with the combination index.10 Under a
Loewe model, each compound can fully inhibit the response, and
the combination results in complete inhibition at lower doses
than for each single agent. Therefore, the efficacy boost is best
assessed using departures from a Bliss model21 or excess over the

Figure 3. (a) Depiction of ΔHSA synergy metric, versus run order in
the inflammation screening campaign. Based on the single-compound
treatments, the maximal activity of the component compounds of each
pool is calculated. Departures from this highest single activity (ΔHSA)
in the positive direction suggest synergy, in the negative direction anta-
gonism. Themean( 2 standard deviations are shown as horizontal lines.
Hits were selected on the basis of the HSA model (criterion: ΔHSA >
0.4, i.e., 40% higher activity than predicted bymost active single agent) as
well as Bliss and Combination Index algorithms. The union of these hit
lists is colored green in the plot. (b) Screen summary including hit and
confirmation rates.
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highest single activity.14 We conclude that, to capture both
potency shift and efficacy boost, one must use multiple synergy
measures in the selection of active pairs (Figure 4d�f).

Traditional approaches to the discovery of synergistic combi-
nations entail the rational design based on clinically congruent or
complementary activities. The drawback of this approach is that
it will miss the unexpected interactions within and between
signaling pathways that are often seen in biological systems.
While chemical space is vast, the number of well-validated tool
compounds that merit testing in combinations is in the low
thousands, a scale that is addressable by the proposed parsimo-
nious synergy screening approach but not by previous techniques.
Our results highlight the feasibility of efficiently and systematically
screening for synergistic combinations provided the following
criteria are met: the screening assay must be robust, the library
must contain redundancy of activities, and the analysis must use
multiple modes of synergism as hit criteria.

Although the scale of the presented 1027-compound screen is
possible to contemplate as a simple all-pairs screen, the geo-
metric scaling of combinations means that many simple ques-
tions are not addressable with the naïve approach. For example, a
screen of pairwise combinations of three commercially available
bioactive collections (Microsource Spectrum, Tocris Tocirscreen,
Sigma LOPAC, ∼4400 compounds total) would entail ∼107

assay points if pursued as a naïve pairwise screen (in singlicate).
Our proposedmethod would reduce the well number to 4.8� 105

Figure 4. Dose�response analysis of one confirmed active pair from the inflammation screen. (a) Dose response of Cpd02 (horizontal axis, in μM) at
different concentrations of Cpd07 (indicated by colors). Plotted against dose is the fractional activity (response scaled between 0, no inhibition, to 1,
complete inhibition). (b) Cpd07 concentration on horizontal axis at different concentrations of Cpd02 (color key). (c) Heat map depicting same
fractional activity data as panels a and b. Cpd02 is on the horizontal axis, and Cpd07 on the vertical axis. Color map: 0 (blue, no inhibition) to 1 (red,
complete inhibition). (d)ΔHSA z-score heatmap showing departures from highest single activity synergy model, Color map:�3 (blue, antagonism) to
3 (red, synergy or additivity). (e)ΔBliss z-score heatmap showing departures from Bliss independence model. Color map:�3 (blue, antagonism) to 3
(red, synergy). (f) Departures from Loewe additivity model as calculated by log10 combination index. Color map: 4 (blue, antagonism) to �4 (red,
synergy).

Table 1. Validated Synergistic Pairs from the Inflammation
Screena

component 1 component 2 target 1 target 2 no. zHSA > 2

Cpd01 Cpd07 ADRB1 PDE4A 2

Cpd02 Cpd07 ADRB1 PDE4A 8

Cpd03 Cpd08 PDE4A ADRB1 3

Cpd04 Cpd09 ADRB1 PDE4A 4

Cpd05 Cpd10 ADRB1 PDE4A 2

Cpd01 Cpd11 ADRB1 PDE4A 6

Cpd05 Cpd11 ADRB1 PDE4A 4

Cpd05 Cpd06 ADRB1 PDE4A 4

Cpd02 Cpd06 ADRB1 PDE4A 3

Cpd06 Cpd01 PDE4A ADRB1 3

Cpd04 Cpd06 ADRB1 PDE4A 4
a Shown are compound IDs, the annotated target of the compounds, and
the number of doses at which the ΔHSA was greater than 2 standard
deviations from zero (criterion for significant synergism).
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and would have the benefit of duplicate data. Thus a relatively
straightforward question is brought from the inaccessible to the
easily attainable.

In addition to pharmaceutical screening, the presented approach
has the potential to significantly empower chemical genomics
efforts. As has been seen with genetics, single node perturbations
can be of utility in dissecting biology.37 However, epistasis experi-
ments have the ability to overcome redundancy, order members
in pathways, and to identify crosstalk between pathways.38�40

Similarly, in the case of chemical genomics, utilization of tool
compounds one at a time will provide a relatively impoverished
view of the biology in question, one that can be significantly
broadened and enhanced with epistasis information.41�44 The
proposed method can be used to interrogate a much larger frac-
tion of biological interactions, potentially limited only by assay
and tool compound availability.

’METHODS

Compound Libraries. For the viability screen, 11 targeted or
broadly acting chemotherapeutic compounds were selected from the
literature, and 89 compounds were selected from the Tocriscreen set
(Tocris Bioscience) on the basis of structural diversity criteria and
sample availability. For the inflammation screen, a set of 1027 bioactive
compounds was selected from an internal proprietary collection. These
compounds have known activities against a series of targets of interest to
therapeutic groups.
Pool Design. Pool design begins with the shifted transversal

design45,46 to select pools of 10 compounds covering most pairs. How-
ever, this method does not yield complete coverage of the design space
with equal-sized pools. Therefore, we recursively iterated the algorithmon
the subsets of pairs that were not covered in the first pass to fill out the
design. Finally, a small number of remaining deficiencies were filled with a
greedy search. This approachwas relatively efficient: all pairs of 1027 com-
poundswere represented in 12,537 pools of 10, versus 11,708 (1027C2/45)
for an optimal design. In addition to the pools, each compound was also
tested as a single compound at 1 and 10 μM in triplicate. To create a self-
deconvoluting design, the same design was used twice with the compound
identifiers permuted. For the viability screen, 136 pools were required
to cover the 4950 combinations of 100 compounds, and unambiguous
deconvolution required repeating the design at least three times (four
times was used in practice) with compound identities permuted.
Compound Management. The assay was performed using

preplated compounds. Each individual compound was contained in a
separate well of a 1536-well source plate (at a concentration of 2.8mM in
DMSO for the inflammation screen or 4 mM for the viability screen),
and an acoustic dispenser was used to deliver 2.5 nL each of the mixture
components to the appropriate well of the assay plates (for a final assay
concentration of 1 μM in either 7 μL for the inflammation screen or
10 μL for the viability screen). Each assay well received 10 separate
dispenses. For single-compound wells, DMSO was added to maintain a
final volume of 25 nL. For dose�response experiments, serial dilutions
were generated using a Biomek FX liquid handler (Beckman Coulter),
plated in a 1536-well source plate, and an acoustic dispenser was used to
combine the different doses of compounds.
Cell Culture. HCT116 (ATCC: CCL-247) colorectal carcinoma

cells were maintained in McCoy’s 5a medium, 10% FBS, penicillin/
streptomycin at 37 �C and 5%CO2. THP-1 monocytic cell line (ATCC:
TIB-202) were grown in T-75 culture flasks in RPM 1640, 10% FBS,
penicillin/streptomycin, and 50 μM 2-mercaptoethenol. Forty hours
prior to experiments, cultures were harvested and seeded into fresh T-75
flasks at 3.5 � 105 cells mL�1 in 30 mL of growth medium and
prestimulated with IFNγ at a final concentration of 40 ng mL�1.

Viability Screen. Four hundred HCT116 cells in 10 μL of growth
medium were added per well of the assay plate with compounds
preplated. Control wells had only DMSO preplated, negative controls
were seeded with cells, and positive control wells were seeded with cell-
free medium. Seventy-two hours after plating, viability was assessed
by adding 3.3 μL of 4x CellTiter Glo reagent (Promega), incubating for
10 min, and reading luminescence. Hit picking criteria were determined
by exploration of the distribution and reproducibility of the synergy
metrics, and a threshold was selected on the basis of the apparent signal
vs noise boundary prior to pool deconvolution.
Inflammation Screen. Five thousand THP-1 cells per well were

added to the assay plates with compounds preplated, followed by
stimulation (lipopolysaccharide/interferon γ, 25 and 295 ng/mL final,
respectively) after 1 h. IL6 HTRF (Cisbio) antibodies were also added
to the culture. Twenty-four hours later, secreted IL6 was measured by
adding KF to 400 mM and incubating 3 h at RT before reading fluo-
rescence. Viability of THP-1 cells was assayed by removing media from a
parallel culture to 5μL (after the same 24 h stimulation) and adding 5μL
of 2x CellTiter Glo reagent, followed by a luminescence read. Controls
for the screen were DMSO with or without stimulation (negative and
positive controls, respectively, 44 each per plate, distributed throughout
plate). Hit thresholds were determined via exploratory data analysis and
prior to pool deconvolution, as for the HCT116 viability screen.
Liquid Handling. Compounds were dispensed with ATS-100

acoustic dispensers (EDC) into low-base, white (THP1) or black
(HCT116), cell culture treated, polystyrene 1536-well plates (Aurora).
Cell and stimulant dispenses were performed with a BioRapTR flying
reagent dispenser (Beckman). HTRF reagent and CellTiter Glo were
added to the assay plates using a BioRapTR, and luminescence and time-
resolved fluorescence were read out using Envision or Viewlux readers
(Perkin-Elmer). Media removal for the THP-1 viability assay was done
with a GNF plate washer/dispenser.
Analysis.Data analysis was performed using Pipeline Pilot (versions

7 and 7.5, Accelrys), which in turn utilized R scripts47 for calculations.
Models for synergy based on Loewe additivity (combination index10 and
Bliss independence21 were used in addition to a highest single activity
(HSA)model.14 In confirmation experiments where replicates were run,
significance of synergy was assessed by calculating z-scores for replicate
synergy metrics, and a threshold of z > 2 (p∼0.05) was selected for
significance. Statistical tests were performed in the R environment,47 and
deconvolution (identifying recurring pairs in hit pools) was aided by the
“arules” package.48

’ASSOCIATED CONTENT
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of charge via the Internet at http://pubs.acs.org.
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